JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Tech II - Semester Examinations, March/April 2011 CMOS ANALOG AND MIXED SIGNAL DESIGN (DIGITAL SYSTEMS AND COMPUTER ELECTRONICS)

Time: 3hours
Max. Marks: 60

Answer any five questions All questions carry equal marks

1) a) Explain how layout techniques improve the matching in MOSFET mirrors?
b) Derive the expression for sensitivity of I_{0} due to V_{dd}, temperature coefficient TC of I_{0}.
2) a) Draw the circuit of a Beta multiplier referred self biasing circuit and derive the expression for temperature coefficient.
b) Using the Beta multiplier current reference, design a $10 \mu \mathrm{~A}$ current source. Estimate the temperature coefficient and assume $\mathrm{V}_{\mathrm{dd}}=-\mathrm{V}_{\mathrm{ss}}=2.5 \mathrm{v}$.
3) a) Explain two different types of gate drain connected load amplifiers.
b) Draw the circuit of a shunt-shunt feedback amplifier and explain its working along with parameter calculations.
4) a) Explain the operation of a wide swing differential amplifier.
b) Design a two stage CMOS OPAMP with the following specifications $\mathrm{A}_{0}=55000$, $\mathrm{GBW}=1.2 \mathrm{MHz}, \mathrm{SR}=2.5 \mathrm{~V} / \mu \mathrm{sec}$.
5) a) Explain the design and analysis of a Tran conductance amplifier..
b) Draw the circuit for cross coupled pair differential amplifier with active loads and derive the expression for A_{v}.
6) a) Explain dynamic comparator and dynamic biasing of current mirror circuits.
b) Find the device dimensions of the input stage for a 2-stage comparator to meet the following specifications. Input common Mode Range is 1.5 v to $9 \mathrm{v}, \mathrm{V}_{\mathrm{dd}}=10 \mathrm{v}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{v}$.
7) a) Design a Zero temperature coefficient voltage Beat Multiplier reference at $300^{\circ} \mathrm{k}$ with $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{v}$ and $\mathrm{V}_{\mathrm{dd}}=5 \mathrm{v}$. Determine the sensitivity for changing V_{dd} and Temperature T .
b) Explain the basic building blocks of a switched capacitor circuit.
8) a) Design a bit current steering DAC using the generic current steering DAC. Assume that each current I is 5 mA and find the total output current for each input node.
b) Explain different characteristics Parameters of ADC and DACS.
